College of Engineering

Department of Civil Engineering

CE 588 Numerical Methods in Geotechnical Engineering

ä_

ച ألملكسعود

King Saud University

Credit and	2/2 (L = stars a) 0 (Tests sight) 0 (L = l = sets set)		
Contact hours	3/3 (Lectures), 0 (Tutorials), 0 (Laboratory)		
Required, or Elective	Required for a MSCE degree		
Course Description	Numerical versus analytical solution. Approximation and solution of governing differential equations. Basic principles of finite elements, finite difference, and boundary elements methods. Numerical solutions of typical geotechnical engineering problems.		
Prerequisites or Co-requisites	None		
Course Learning Outcomes	Students completing this course successfully will be able to		
	Course Learning Outcomes	Related Program Outcomes	
	CLO1 : Recognize the procedures in which a complex problem of large extent is divided, or discretized, into smaller equivalent units, or components,	K1	
	CLO2 : Apply the procedures of discretization into smaller equivalent units, or components to solve complex problems	S1	
	CLO3 : formulate geotechnical problems as a well posed boundary value problems (boundary and initial conditions, free-surface problems)	S1	
	CLO4 : Use in-house and commercial finite difference and finite element codes in solving complex geotechnical problems and interpret results.	S1	
	CLO5: Apply fundamentals of soil mechanics and numerical methods to solve geotechnical problems and understand the limitations	S1	
	CLO6: Verify numerical solutions through comparisons to analytical or graphical solutions.	C2	
Student Outcomes related to this Course	 K1. Recognize advanced engineering knowledge, concepts and techniques to identify, interpret and analyze complex and real-life engineering problems. S1. Provide solution for complex and real-life engineering problems through critical thinking and using modern engineering tools and identify its impact on social and ethical issues. C2. Design novel advanced Civil Engineering systems and evaluate its performance and effectiveness for engineering practice and its impact on 		

Topics Covered	List of Topics	Related CLOs	
	1. Introduction	CLO1	
	2. Analytical versus numerical solutions	CLO1	
	3. Historical background	CLO1	
	4. Overview of analytical solutions for typical problems in geotechnical engineering.	CLO3	
	5. Overview of numerical methods and identification of methods commonly applied in geotechnical engineering.	CLO2	
	 Basic idea of : initial, boundary, and Eigenvalue problems; Dirichlet versus Newmann boundary conditions, primary versus secondary variables 	CLO3	
	7. Principle of the finite difference method, the basic idea and basic features	CLO1	
	8. Finite difference solution of elliptic differential equations - application two-dimensional seepage problem.	CLO3	
	9. Finite difference solution of parabolic differential equations - application to Terzaghi's one-dimensional consolidation	CLO4	
	10. Basic principles and concept of finite element method.	CLO2	
	11. Discretization and displacement approximation	CLO1	
	12. Elements and global equations	CLO2	
	13. Shape functions for one and two dimensional elements, isoparametric elements (Triangle, quadrilateral)	CLO5	
	14. Assembly, integration and implementation.	CLO3	
	15. Two-dimensional plane strain and axisymmetric idealization.	CLO5	
	16. Drained, undrained and coupled analysis, modeling of construction and excavation	CLO6	
	17. Overview of boundary element method, formulation, BEM for plane elasticity	CLO3	
Textbook(s) and Other Required	 Chapra, S. C. and Canale, R.P. (2010). "Numerical Methods for Engine McGraw-Hill, New York, 6th Edition. David M Potts and Lidija Zdravkovic (1999). "Einite Element Analysis" 	eers"	
Material	 David M Potts and Eldija Zdravković. (1999). "Finite Element Analysis in Geotechnical Engineering – Theory", Thomas Telford Publishing Ltd., U.K. David M Potts and Lidija Zdravković. (1999). "Finite Element Analysis in Geotechnical Engineering – Application", Thomas Telford Publishing Ltd., U.K. 		
Grading System	Assignments15%,Term Project15%,Midterm Exam30%,Final Exam40%		
Instructors	Prof. Mosleh A. Al-Shamrani (2A54), email; <u>shamrani@ksu.edu.s</u>	<u>a</u>	
Date of Review	February, 2021		